

SocialMedia
Social
Media

https://t.me/Pantercon_Chat
https://www.instagram.com/pantercon/
https://twitter.com/pantercon
https://www.facebook.com/Pantercon-1932266703739338
https://plus.google.com/105752886480806886953
https://bitcointalk.org/index.php?topic=4949895.msg44610322#msg44610322
https://www.reddit.com/user/Pantercon
https://medium.com/pantercon
https://www.pinterest.at/pantercon/
https://www.linkedin.com/company/pantercon
https://discord.gg/hrxzphU
https://github.com/Pantercon

Content Tech Paper
Hydra Blockchain

1. Planes of the Hydra hybrid blockchain 5

1.1 General information 5
1.2 Mainchain 5
1.3 Sidechains 5
1.4 Parallelisation of verification processes. 6
1.5 ECHIDNA (master data of Hydra objects) 7
1.6 NYX (anonymous transactions) 8
1.7 PLUTOS (B2B transactions) 8
1.8 HERMES (HYDRA object marketplace) 8
1.9 DEMETER (ownership rights as commercial goods) 9
1.10 HERA (rights for chains, smart contracts) 9

1.10.1 Rights in general 9
1.10.2 Assignment of rights 10

1.11 HADES (Archive) 10
1.12 ARCHIMEDES (Hydra objects) 10
1.13 Test network 11
1.14 Tokens 11

2. Role-based time-controlled user authorization
concept 11

2.1 General information 11
2.2 Components concept 12

2.2.1 Organizations 12
2.2.2 Organizational units 12
2.2.3 User login 13
2.2.4 Rights 13
2.2.5 Roles 13
2.2.6 Roles rights 13
2.2.7 User roles 13

2.3 Time limitation 14
2.3.1 Temporary rights 14
2.3.2 Access to data with a limited period of time 14

3. Consensus algorithm 15

4. HERAKLES 15

5. PHOENIX 16

6. Really smart contracts 17

6.1 General information 17
6.2 Automatisms 18
6.3 Standardization through modularization of smart contracts 18
6.4 Customizing of modules 19
6.5 Interaction with contracts during runtime 19
6.6 Termination in case of non-compliance 20

7. The „time problem“ 20

8. Merkle Tree / Merkle-Proof 20

1. Planes of the Hydra hybrid blockchain

1.1 General information

In order to guarantee high performance and low sto-
rage capacity, the Hydra consists of several layers. Si-
milar to the plasma approach, MapReduce functions
are used here, too, and the verification processes are
parallelized into several forced childchains with Merkle
Trees.

The use of sidechains (childchains) assigned to a main
chain alone increases the scalability enormously.

1.2 Mainchain

This is the classic main variant and heart of the block-
chain system. With the Hydra, this mainchain consists
of many different levels, which are explained below.

1.3 Sidechains

The sidechains are separate blockchains that are atta-
ched to their parent blockchain by a two-way peg. This
„Two-Way-Peg“ (Zerberus) regulates the interchange-
ability of objects between the superordinate block-
chains and the sidechains. A fixed rate is defined for
this. It is also possible to attach several sidechains to a
sidechain. This means that entire hierarchies can also
be mapped.

In order to name this hierarchical illustration always
one speaks of a „Parent“-Chain and the subordinated

Version 0.9.0/Draft 5

„Child“-Chain.

The technical procedure is as follows: Users must al-
ways send objects to a certain output address in the
higher-level chain. There, the objects are locked so that
they can no longer be used in this chain, so that users
cannot duplicate them. After verification of this trans-
action, the objects are released in the sidechain. The
user can now use them there. The reverse case occurs
when returning from a sidechain to the main chain.

1.4 Parallelisation of verification processes.

If the current number of transactions for verification
exceeds a specified value, a new verification process
is automatically started in parallel.

This process can be repeated several times and will
be limited to a certain number of parallel processes.
Depending on the consensus algorithm used and the
number of verification points, there may be a large de-
viation in performance in a direct comparison.

The number of transactions that trigger a new parallel
process and the limit of the parallel processes are de-
termined by tests during the conversion to determine
the optimum.

Technically, the conversion takes place with Merkle
trees and in forced sidechains.

Therefore, a transaction rate of 50,000 per second

Version 0.9.0/Draft 6

should be achievable initially.

In the last expansion stage of Hydra, a multiple of this
will be feasible.

1.5 ECHIDNA (master data of Hydra objects)

Contains the master data of all levels of all Child-, Side-
chains and the Mainchain. Only the master data of the
chains and their objects are verified in ECHIDNA. No
classical transactions take place here. This level is used
exclusively for the functionality of all other chains. The
entire fee administration is also managed in ECHIDNA.

In principle, it is possible to charge other fees or addi-
tional fees in sidechains, which are then transferred to
an assigned organization. This depends on the consen-
sus algorithm and whether the sidechains are „public“
or „private“.

In order to obtain a simplification for the end user, fees
of the transaction in the mainchain are divided into 3
priority levels (high, medium, low). High priority is as-
sociated with high fees, but guarantees an immediate
transfer, etc.

In the final stage, users will also be able to create new
fees themselves.

Version 0.9.0/Draft 7

1.6 NYX (anonymous transactions)

The NYX sub-segment is intended to facilitate anony-
mous transactions.

However, there is still a need for legal clarification.

1.7 PLUTOS (B2B transactions)

The B2B transactions are stored here. Similar to other
public chains, these addresses can theoretically be vie-
wed. Through the user authorization it will be possible
for the owners of a wallet to transfer time-controlled
rights to another location. Example: A company grants
reading rights of an account for the accountant of the
tax consultant with a time restriction (example: only
the last 3 months).

1.8 HERMES (HYDRA object marketplace)

The transactions of goods objects are documented
here. In this area, the focus is on the one hand on tra-
ceability in the movement of goods and on the other
hand on data provision. The focus here is on the follo-
wing points in particular:

• Serial numbers
• Batches
• Logistics tokens

In the area of data provision, the aim is to provide data
for B2B processes for other users. Possible use ca-
ses for this are that suppliers provide articles with all

Version 0.9.0/Draft 8

attributes (specification of dimensions, text descripti-
ons, availability and also prices). Via the assignment
of rights it is possible to make these only available to
predefined partners. These in turn can then work with
these data and fill their ERP systems.

1.9 DEMETER (ownership rights as commercial

goods)

This area offers a very high potential of use cases. With
the transfer of ownership to one or more other users,
rights are automatically assigned as well. These may
be final or subject to time restrictions.

1.10 HERA (rights for chains, smart contracts)

1.10.1 Rights in general

In this area, the rights of the individual users, their roles
and thus the authorizations for the respective chains
are documented. The authorization system will be di-
scussed in detail. The most important areas here are
that two types of time control are bound to the rights.

• The right itself is only valid for a certain period of
time (e.g.: holiday replacement, then a right can
be created for an employee for 14 days).

• The right is subject to a time limit (e.g. employee
may only view the transactions of the current quar-
ter).

Version 0.9.0/Draft 9

1.10.2 Assignment of rights

The rights are assigned according to a two-stage prin-
ciple. The rights can be created and are automatically
saved. However, these only become active after verifi-
cation and the fee is incurred.

1.11 HADES (Archive)

The HADES area is used for archiving data. The Phoe-
nix method is used to move data from the main chain
to the HADESChain. This function can also be used for
sidechain in the final development stage. The Phoenix
method is explained in more detail below.

1.12 ARCHIMEDES (Hydra objects)

This is where the details of the Hydra objects are sto-
red. In general, the term object is used for all kinds of
tokens and newly generated things.

Furthermore, it is also possible to generate completely
new types of objects that are not comparable to the
„classic“ tokens. Here the limit is the imagination.

• Example: ToDoLists for project management,
• Management of property boundaries,
• Calorie counter for Weightwatchers
• Wandering needle administration etc.

Version 0.9.0/Draft 10

1.13 Test network

The test network has all the features of the producti-
ve system. The differences here are that the transac-
tion data (transactions) are deleted every quarter, but
not the smart contracts. In addition, KRONOS allows
you to simulate time. This means that time-controlled
contracts can be tested at 10 times the speed as an
example. This would mean that a contract that runs
for 30 days in real terms would have run in 3 days.
KRONOS not only has the ability to accelerate time,
but also to stop at certain points or consciously go to
certain points in time to test from that point.

1.14 Tokens

There will be a number of predefined tokens that alrea-
dy have certain properties. Such classic tokens beco-
me Security Token, Utility Token, Membership Token or
Access Token. For each token, however, it will also be
possible to freely program functions for it.

2. Role-based time-controlled user aut-
horization concept

2.1 General information

This concept combines the classic role-based user aut-
horization with a time-controlled assignment of rights
and a time-controlled access to transaction data.

Version 0.9.0/Draft 11

2.2 Components concept

It is possible to assign one or more roles (admin, clerk,
etc.) to a user. These roles have special rights. A user
may execute an action if he or she has been assigned
the right on the basis of one (or more) of his or her ro-
les. A user may execute an action if he or she has been
assigned the right based on one (or more) of his or her
roles. Here it will be possible that these roles have a
time limit. Example: Transferring a role to another em-
ployee for vacation replacement.

In the final development stage, it will be possible to
further individualize rights at the user level independ-
ently of roles.

2.2.1 Organizations

Organizations can best be declared as legal entities,
companies, NGOs, etc.

They can run sidechains or work with the mainchain.
For the objects created by you (tokens, sidechains etc.)
you have the possibility to assign authorizations.

2.2.2 Organizational units

These are the units that make up an organization and
represent the departments as in the classic organiza-
tion chart. These organizational units can then be as-
signed roles that are passed on to the users.

Version 0.9.0/Draft 12

2.2.3 User login

In general, a user must log in to Mainnet in order to
move to the other levels. When logging in, the per-
missions of the different levels are loaded and allow
navigation in the individual areas.

2.2.4 Rights

Rights are defined as the release or prevention of an
action. Example: Reading transaction data, creating
objects.

2.2.5 Roles

Roles are defined as functions of persons who must
have several rights in order to exercise them. These
roles can be for example: administrator, clerk etc.

2.2.6 Roles rights

Authorizations are then assigned to these roles. As an
example, an administrator may read Sales and Trans-
actions for the last quarter, but may not make any bank
transfers.

2.2.7 User roles

Here the individual users are assigned one or more ro-
les. This means that it is theoretically possible that role
rights contradict each other. The „most favorable“ right

Version 0.9.0/Draft 13

then applies here. Example A user is assigned to the
role „sales clerk“ and is therefore not allowed to make
transfers. However, he is also assigned to the role of
„Management“. This role does indeed have the right to
make transfers, so this right is granted.

2.3 Time limitation

2.3.1 Temporary rights

As already mentioned at the beginning, you can assign
rights temporarily. These can be assigned for a certain
period of time or with an expiration date. In the final
version, it will be possible to have these event-control-
led via Smart Contracts. Example: After receipt of a
payment, a right is extended by one month.

2.3.2 Access to data with a limited period of time

Another important point is the possibility of making
transaction data with limitations available. This can be
a static period or a dynamic period.

So it would be conceivable that certain users may see
only the transactions since beginning of the year and
others always only all transactions, which are not older
than 3 months.

Version 0.9.0/Draft 14

3. Consensus algorithm
In the mainchain, an algorithm similar to the Proof of
Importance will be used. An importance value is as-
signed to each individual point, which is made up of
various factors such as the number of PANXs, holding
time, height and number of transactions, and so on.
This method helps to ensure that all computers on
the network match. Users with high „importance“ can
„harvest“ and earn rewards.

At Hydra, HXP can be specifically harvested through
this process. These, in turn, are needed to carry out
actions, or can simply be sold.

For self created Hydraobjects and especially in the si-
dechains different consensus algorithms can be used.

In the final stage the most common consensus algo-
rithms will be provided and it will be possible to pro-
gram own consensus methods.

4. HERAKLES
Herakles is the GUI for creating new side- and child-
chain, rights management and the whole object ma-
nagement. This formed the core part for the entire ma-
nagement system.

Special attention is paid to intuitive usability. Further-
more, there will be interfaces for interacting with the
individual areas of the blockchain or individual smart-
contracts.

Version 0.9.0/Draft 15

5. PHOENIX
Phoenix allows the burning of tokens and their simulta-
neous rebirth not only within a chain. This functionality
can also be used for customize tokens or is used in the
Hydra Main Chains. The simplest comparison is with a
closing and opening balance sheet. The balances for
all booked accounts are created and transferred to the
new posting period. This usually happens at the end of
the year, but can happen at Hydra in freely selectable
periods.

Here a kind of balancing takes place in the Phoenix pro-
tocol. The mainchain becomes a Hades archivechain
and a new mainchain is created. From the Phoenix pro-
tocol, the balanced values are now transferred to the
new mainchain. The transactions have not been lost,
but can still be viewed via the Hades ArchiveChain.

For the user it will be in such a way that it works as if
these data were still in the main chain.

By this methodology the blockchain is kept small again
and again and archives can be created. Theoretically it
would also be possible to destroy such an archive.

Since this methodology is also available in sidechains,
there can be also points of contact with the DSGVO
here depending on the function mode and the data
that are stored. In order to satisfy these legal aspects,
the Phoenix method can be used here.

Version 0.9.0/Draft 16

6. Really smart contracts

6.1 General information

The programming language for creating Really Smart
Contracts will be C#. The goal is to be able to design
contracts so „intelligently“ that they run automatically
and cover all important components of a conventional
contract.

As with these classic contracts, terms, notice periods,
time points, etc. can be defined.

However, depending on the type of contract, there will
be either an „abort“ or a „rollback“ function. The „Ab-
ort“ function cancels the contract and overrides it, for
example: standing order for an employee‘s salary if the
employee has resigned. The „rollback“ function rever-
ses a contract. Example: An ICO has not reached the
soft cap and the investors receive their deposit back.

In the contracts, a separate process chain can be de-
fined for the „abort“ or „rollback“ function, e.g.: Sup-
plier cancels the contract and has to pay the customer
a penalty in a predefined amount. Ideal applications for
this are quantity and call-off contracts. Further applica-
tion areas could be commission payments with exter-
nal companies, subscriptions with end customers as
well as consignment contracts.

The contracts must have a term.

Version 0.9.0/Draft 17

The activation of a contract is the responsibility of the
order creator, but the orders can be assigned autho-
rizations that force the approval of the other contract
partners.

6.2 Automatisms

In the case of contracts, special attention is paid to
automatisms. For this two core elements are consi-
dered: event-controlled and time-controlled execution
of functions. An event can be defined as the receipt
of a transaction, which then triggers an entire process
chain. Time-controlled would be if the amounts were
automatically transferred from a branch to the head of-
fice at midnight every day.

6.3 Standardization through modularization of

smart contracts

We provide standardized modules that can be com-
bined by the user. Each module provides input and
output parameters and has the ability to be executed
in loops. As an example a module can be called „ti-
me-controlled pricing“.

So it would be possible to deposit a table here, which
gives a new price for each day.

By combining modules, event-driven process chains
can also be mapped here.

Version 0.9.0/Draft 18

6.4 Customizing of modules

Nevertheless, it will be possible to write and store
code for special applications instead of the module
code itself. For each module it will also be possible
to enter a user-defined code instead of the suggested
code. Thus, the module time-controlled pricing could
be reprogrammed in such a way that the price auto-
matically increases by 10% after the first 100 sales per
day. For this a new input parameter for the number of
daily sales would have to be stored.

In general, a self-written code is temporarily stored in
a database. The code is only written into the blockchain
and becomes valid when the smart contract is activa-
ted.

6.5 Interaction with contracts during runtime

Before the contract is activated, parameters that allow
interaction must be defined and assigned authorizati-
ons. An example of this is a contract extension. De-
pending on the authorization, the contract owner can
enforce this on his or her own, or approval must be
obtained from the other contract partners. In general,
there will be a GUI for interacting with Smart Con-
tracts. Depending on authorizations, users will be able
to access the functions provided by the Smart Con-
tract owner. There will also be an interface for batch
processing. Data can then be uploaded in a contract
by the contract owner. Example: Several addresses,

Version 0.9.0/Draft 19

which are all to be placed on a whitelist, or payments
to several addresses with different amounts (e.g.: Air-
drop or Bounty programs).

6.6 Termination in case of non-compliance

If a contract is not fulfilled, termination events are de-
fined. Example: Payment was not made. This releases
the „exit“ scenario for the disadvantaged party. In
most cases this is the „Abort“ function, but can also
lead to a „Rollback“ function, if so defined and possib-
le by the contract type. The disadvantaged party must
complete these functions and activate them manually.

7. The „time problem“
To ensure a uniform time for block creation (acquisition
time), unix time is generally used. In parallel, the time
of the verification point is stored for each block (Time
editor). Here a check with a central time unit takes pla-
ce in advance. The editor time is checked for deviation
and if this does not exceed 13 seconds, it is executed.

8. Merkle Tree / Merkle-Proof
Verification is done with Merkle Trees.

A Merkle tree is in the broadest sense a kind of com-
pilation of data blocks, which is based on represen-
ting the blocks in a kind of tree structure. Each branch
contains only a few blocks, which are combined, has-
hed together and then lead to another branch. Each of

Version 0.9.0/Draft 20

these branches now goes through the same process,
which is repeated until the total number of remaining
hashes is only one value: the „root hash“.

A Merkle proof consists of the „root hash“ of the tree
and that of the „branch“, which consists of all hashes
that go from the branch to the root.

Thus it can be checked whether the hashing at least
for this branch was carried out consistently up to the
end of the tree and whether the position of the branch
in the tree is actually at this point in the tree.

The application is simple: there is a large database and
the entire content of the database is stored in a Merk-
le tree, in which the root of the Merkle tree is publicly
known and trustworthy (e.g. it has been digitally sig-
ned by enough trustworthy parties, or there is a lot
of evidence for the work on it). A user can request a
Merkle proof and after receiving the proof check whet-
her it is correct and whether the received value is ac-
tually at the checked position in the database with that
particular root.

In the course of the implementation, not only binary
Merkle trees are used, but also a more complex va-
riant similar to the Patricia tree principle.

Version 0.9.0/Draft 21

	1.	Planes of the Hydra hybrid blockchain
	1.1	General information
	1.2	Mainchain
	1.3	Sidechains
	1.4	Parallelisation of verification processes.
	1.5	ECHIDNA (master data of Hydra objects)
	1.6	NYX (anonymous transactions)
	1.7	PLUTOS (B2B transactions)
	1.8	HERMES (HYDRA object marketplace)
	1.9	DEMETER (ownership rights as commercial goods)
	1.10	 HERA (rights for chains, smart contracts)
	1.10.1	Rights in general
	1.10.2	Assignment of rights

	1.11	HADES (Archive)
	1.12	ARCHIMEDES (Hydra objects)
	1.13	Test network
	1.14	Tokens

	2.	role-based time-controlled user authorization concept
	2.1	General information
	2.2	Components concept
	2.2.1	Organizations
	2.2.2	Organizational units
	2.2.3	User login
	2.2.4	Rights
	2.2.5	Roles
	2.2.6	Roles rights
	2.2.7	User roles

	2.3	Time limitation
	2.3.1	Temporary rights
	2.3.2	Access to data with a limited period of time

	3.	Consensus algorithm
	4.	HERAKLES
	5.	PHOENIX
	6.	Really smart contracts
	6.1	General information
	6.2	Automatisms
	6.3	Standardization through modularization of smart contracts
	6.4	Customizing of modules
	6.5	Interaction with contracts during runtime
	6.6	Termination in case of non-compliance

	7.	The „time problem“
	8.	Merkle Tree / Merkle-Proof

